Dear Sir or Madam, website www.myday.si uses cookies, which are intended to record visits. This website does not use cookies that contain your personal information.

Do you allow the usage of cookies on this webpage?
Born on this day
Dorothea Christiane Erxleben
Dorothea Erxleben was the first female medical doctor in Germany.
46th week in year
13 November 2024

Important eventsBack

There is water in large quantities on the Moon13.11.2009

Wikipedia (05 Nov 2013, 10:02)

Liquid water cannot persist on the lunar surface. When exposed to solar radiation, water quickly decomposes through a process known as photodissociation and is lost to space. However since the 1960s, scientists have hypothesized that water ice may be deposited by impacting comets or possibly produced by the reaction of oxygen-rich lunar rocks, and hydrogen from solar wind, leaving traces of water which could possibly survive in cold, permanently shadowed craters at either pole on the Moon. Computer simulations suggest that up to 14,000 km2 of the surface may be in permanent shadow. The presence of usable quantities of water on the Moon is an important factor in rendering lunar habitation as a cost-effective plan; the alternative of transporting water from Earth would be prohibitively expensive.

In years since, signatures of water have been found to exist on the lunar surface. In 1994, the bistatic radar experiment located on the Clementine spacecraft, indicated the existence of small, frozen pockets of water close to the surface. However, later radar observations by Arecibo, suggest these findings may rather be rocks ejected from young impact craters. In 1998, the neutron spectrometer located on the Lunar Prospector spacecraft, indicated that high concentrations of hydrogen are present in the first meter of depth in the regolith near the polar regions. In 2008, an analysis of volcanic lava beads, brought back to Earth aboard Apollo 15, showed small amounts of water to exist in the interior of the beads.

The 2008, Chandrayaan-1 spacecraft has since confirmed the existence of surface water ice, using the on-board Moon Mineralogy Mapper. The spectrometer observed absorption lines common to hydroxyl, in reflected sunlight, providing evidence of large quantities of water ice, on the lunar surface. The spacecraft showed that concentrations may possibly be as high as 1,000 ppm. In 2009, LCROSS sent a 2300 kg impactor into a permanently shadowed polar crater, and detected at least 100 kg of water in a plume of ejected material. Another examination of the LCROSS data showed the amount of detected water, to be closer to 155 kilograms (± 12 kg).

In May 2011, Erik Hauri et al. reported 615–1410 ppm water in melt inclusions in lunar sample 74220, the famous high-titanium "orange glass soil" of volcanic origin collected during the Apollo 17 mission in 1972. The inclusions were formed during explosive eruptions on the Moon approximately 3.7 billion years ago. This concentration is comparable with that of magma in Earth's upper mantle. While of considerable selenological interest, Hauri's announcement affords little comfort to would-be lunar colonists—the sample originated many kilometers below the surface, and the inclusions are so difficult to access that it took 39 years to find them with a state-of-the-art ion microprobe instrument.

   
" Beautiful moments of our lives."